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ABSTRACT 

In this paper is considered the problem of determining the possible f-vectors 
of simplicial polytopes. A conjecture is made about the form of the solution 
to this problem; it is proved in the case of d-polytopes with at most d + 3 
vertices. 

1. Introduction 

In recent years much attention has been focussed on extremal problems in- 

volving the numbers of faces of convex polytopes. For example, one consequence 

of the revival of interest in polytopes spurred on by questions raised in linear 

programming was the formulation by Motzkin [13] of what has come to be 

known as the Upper-bound Conjecture. This conjecture, recently proved by the 

author [10] concerns the maximum possible number of faces of a polytope of a 

given dimension with a given number of vertices. 

The corresponding minimal problems appear to be more difficult, and it is 

only with the restriction to the class of simplicial polytopes that significant pro- 

gress has been made. Such progress includes the proofs of the so-called Lower- 

bound Conjecture by Walkup [15] in dimensions 4 and 5, and Barnette [1] in the 

case of facets, and the formulation by McMullen-Walkup [12] of a generalization 

of the Lower-bound Conjecture. 
In this paper we shall discuss the most general problem of finding all the 

possible sequences of numbers of faces of simplicial polytopes. Perhaps because 

no conjectures about the form of the answer have, so far, been made, little progress 

has been made on this problem. Here we shall formulate such a conjecture, and 

prove it in case of polytopes with few vertices. 
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2. The conjecture 

Let P be a simplicial d-polytope, and for j = 0, ..., d -  1, let f j ( P ) = f j  be the 

number of its j-faces. (For the terminology used in the paper, the reader should 
consult Grtinbaum [3].) The sequence (fo,"',fd-1) is called the f-vector of P. 

We shall adopt the conventions f_ 1 = 1, and f :  = 0 if j < - 1 or j => d. It is a 

familiar fact that the numbers f j  satisfy a set of linear equations, known as the 

Dehn-Sommerville equations ([2; 14]; see also Klee [5], Griinbaum [3, §9.2]). 

These are, for - l < j < d - 1 ,  

( - 1 ) '  + f ,  = ( -  1 )< i - i f  s . 
i = "  -P 

(Clearly the last equation, for j = d - 1, is trivial; the first, for j = - 1, is just 

Euler's relation; see Grfinbaum [3, §8.1].) For any sequence ( fo , ' " , fa -1)  we 

write 

g k =  Z ( - 1 )  k-j - "  • 
j = - - I  

Then it can be shown ([12], where gk is denoted g(k n+ 1)) that the Dehn-Sommerville 

equations are equivalent to the following equations: for k = - 1,-.., [½(d-  1)], 

gk = --  g a - k -  l" 

The relationship between the numbers f j  and gk can also be expressed in the 

form 
' 

f ) =  ~* gk 
k = - I  

= 

where we adopt the notation (here and elsewhere) n = [½d]. Thus, the numbers f i  

can be written as linear combinations of g - l ,  "" ,g , -1  with non-negative coef- 

ficients. 

Let a and j be positive integers. We define the j-canonical representation of a 

as follows ([7]; see also Grtinbaum [3, §10.1]). I f  the numbers c j, c j - l ,  "", %+1 

have already been defined, and 

[Cm+x ~ 

we define Cm by 

era=max cla> j + ... + k m + l ] +  
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The sequence (ci, cj_~,...) clearly terminates for some c i with i>= 1, and the 
numbers cj,...,ci then satisfy 

c j>  cj_~ > ... >c  i ~ i .  

The j-canonical representation of a is then 

cj 

Now if k > j  is any other positive integer, we define the fractional power 
a <klJ> by 

a<klj>= (CJ+ k -  J) + (cJ-1;.__k?J) +. . .  + { e i + k - j  ) 
k \i + k - j / "  

(Compare Kruskal [7-1, Griinbaum I-3, §10.1-1.) We also adopt the natural 

convention 0 ( k I D  = O. 

We are now able to state the conjecture which is considered in this paper. 

CONJECTURE. The sequence (fo,"',fa-1) is the f-vector of some simplicial 

d-polytope if and only if 

gk -= - -  gd-k- 1 

gk >=0 

(k = - 1 , . . . ,  [ ½ ( d -  1)])  

(k = 0,. . . ,  n - 1), 

(k = 1 , . . . , n -  1). 

(We remind the reader that n = [½d], and that the convention f_  1 = 1 (=  g_ 1) 

is used throughout.) 

3. Some remarks on the conjecture 

We first observe that, since every d-polytope has at least d + 1 vertices, the 

inequality go > 0 always holds. Further, a d-polytope with v vertices has at most 

( ~ )  edges. This implies 

The conjecture has the following implications. Let us write fo = v for the 

number of vertices. Then the inequalities gk<=g<kk+l llk> imply that, for 

k = 1 , . . . , n -  1, 
gk <= g(o k+lll) = (V -- d - 1) (k+lll> 

1) 
k + l  
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These inequalities yield corresponding upper-bounds for the numbers fj .  For 
j = 1,..., n - 1, we have 

fj 
v - d + k - 1  

k=-I  k + l  

with equality if and only if the polytope is (j + 1)-neighbourly; that is, every 

subset o f j  + 1 vertices is the set of  vertices of  a j-face. For j = n, . . . , d -  1, the 

coefficient of each gk in the expression for f j  given in the previous section is 

positive. Thus, the upper-bound for f j  is only attained when each gk attains its 

maximum, and so the polytope must be n-neighbourly. Bearing in mind the fact 

that a d-polytope with v vertices and the maximum possible numbers of faces 

must be simplicial (see Klee [-6], Gri~nbaum [31), McMullen [91, we see that our 

conjecture implies the Upper-bound Conjecture, which we know to hold [101 . 

The inequalities gk > 0 (k  = 0 , ' " ,  n -- 1) are just those of the Generalized 

Lower-bound Conjecture for simplicial polytopes, formulated by McMullen- 

Walkup [121. It was further conjectured in that paper that equality gk = 0 holds 

only for polytopes which admit a subdivision into a simplicial d-complex, every 

(d - k - 1)-face of which is a face of the polytope. This would naturally imply 

that g~ = 0 for each j = k + 1, ..-, n - 1, an implication which would also follow 

from our conjecture. 

McMullen-Walkup [,,121 showed by means of examples that any linear 

inequality satisfied by the numbers f j  is a consequence of the inequalities gk 

=> 0 (k = 0 , ' " ,  n -- 1). However, the inequalities of our conjecture are not all 

linear, and would imply that not all possible sequences (f0, "",fd-1) lying in the 

n-dimensional simplicial cone determined by the Dehn-Sommerville equations 

and the McMullen-Walkup inequalities correspond to simplicial d-polytopes. 

4. The cases v < d +  2 

We shall now establish the conjecture in the cases v < d + 3 (where v = fo). 

We begin with the easier cases v < d + 2. 

The only d-polytopes with d + 1 vertices are the d-simplices, for which 

f J =  + . 

and so 
gk=  0 ( k = O , . . . n -  1). 
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This case clearly satisfies the conditions of  the conjecture. 

In the case v = d + 2, since go = 1, and l<k+~tk>= 1 for all k = 1,2,- . . ,  the 

conjecture is equivalent to:  for some k = 1, . . . ,n ,  

gj = 1 (j = 0,- . . ,  k - 1), 

gj = 0 (j = k , . . . ,  n - 1). 

Now the simplicial d-polytopes with d + 2 vertices are just the polytopes T k 'd -k  

[11]; denoted Tk a or Tf_ k by Gri inbaum [3, §6.1], for k =  1, . . . ,n .  T k'd-k 

is the convex hull of  a k-simplex and a (d - k)-simplex with a single relatively 

interior point of  each in common.  From the expressions for the numbers of  faces 

of  T k d - k  [3, Theorem 6.1.2], it may be seen that the corresponding numbers g~ 

are precisely those given above. 

5. The case v = d + 3 

We first reformulate the conditions of  the conjecture. As we have already 

observed, the conditions of  the conjecture imply that, for k = 1, ..., n - 1, 

0 = g k = k + 2 .  

We have two possibilities, according to the k-canonical representation of  gk-1. 

I f  gk-1 = k + 1, it is clear that  the full range of possible values for g~, namely 

that  given above, is allowed. On the other hand, suppose gk-1 = m == k. I f  

m > 0, the k-canonical representation of  m is 

m =  + + . . . +  , 
- m - t -  

and so the range of  values allowed for gk is 

0 = < gk = < m<k+llk> 

+ + 2  

m .  

I f  m = 0, then gk = 0 also. In other words, we have 

0 < g k < g k - l . =  = 

SO, to verify the conjecture, it is enough to prove 

THEOREM. The sequence (fo, "",fd-1) is the f-vector of some simplicial d- 

polytope with d + 3 vertices if  and only if, for  some k = 1, . . . ,n ,  
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gj = j + 2  ( j = O , . . . , k - -  1), 

0=<gy < gj-a (j = k, --., n - 1 ) .  

We shall prove the theorem using the technique of Gale diagrams ([3, §§5.4 

and 6.3]; McMullen-Shephard [11, Chapter 3]). A standard Gale diagram of a 

simplicial d-polytope P with d + 3 vertices is a subset/3 of d + 3 points (not 

necessarily distinct) of the unit circle S in the plane E z, such that at least two 

points of/3 lie on each side of every diameter of S, and no two points of/3 lie at 

opposite ends of any diameter of S. If the vertices of P are x l ,  " ' ,xa+3, and the 

corresponding points of /3 are ~1,'",~d+3, then the condition that (say) 

x~, . . . x  j÷ ~ are the vertices of a j-face of P is just that 

o Eint conv {~j+2, "",~d+3}, 

where o is the centre of S. 

A diameter of S which contains a point of P will be called a diameter of/3; 

points of/3 on a diameter Lof/3 will be said to be associated with L. In an obvious 

way, we can talk about adjacent diameters of P, and, since/3 must have at least 

three diameters, we may distinguish points of/3 associated with adjacent diame- 

ters as being at the same or opposite ends of those diameters. 

It follows from the above description of/3 that we may rotate the diameters 

of P about o in any fashion, without changing the combinatorial type of the 

corresponding polytope P, as long as we do not allow adjacent diameters whose 

associated points are at opposite ends to cross. In particular, two adjacent diame- 

ters whose associated points are at the same end can be brought into coincidence, 

and a diameter with two or more associated points can be separated into the 

corresponding number of diameters with a single associated point, all of which 

are at the same ends. Performing these operations as many times as possible leads, 

respectively, to contracted and distended Gale diagrams of P. A contracted Gale 

diagram has an odd number of diameters, and points associated with adjacent 

diameters are at opposite ends; a distended Gale diagram has d + 3 diameters, 

each with a single associated point. 

We shall, for the most part, work with distended Gale diagrams. The difference 

between the numbers of points of P on each side of a diameter Lof/3 is called the 

excess of L. The first of the conditions on/3 implies that the maximum possible 

excess of a diameter is d - 2; note that the excess has the same parity as d. It can 

easily be verified that adjacent diameters of 15 whose associated points are at 
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opposite ends have the same excess, if the associated points are at the same ends, 

then the excesses differ by 2, except that both excesses may be 1. By considering 

the way the excess changes as we move around o, we also see that if d is even/3 

has at least one diameter of  excess 0, and if d is odd/3  has at least two diameters 

of  excess 1 (whose associated points are at the same end). 

I f  we denote by Pe the number of  diameters of /3  of excess e, we deduce from 

the above remarks that, if  e > 4 and pe > 0, then P,-2 >= 2. So, if d > 2 and e > 2 

(with the same parity), then 

pj>e-l.= 
j<e 

Since ~jpj  = d + 3, it follows that 

Y~ p j < d - e + 4 .  
j~_e 

We next observe that if e > 2 is the maximal excess of  any diameter of/3,  then 

the p,  diameters of  excess e occur in adjacent pairs, whose associated points are 

at opposite ends (for, we observe that the diameters adjacent to the diameters 

of  an odd number of adjacent diameters of  excess e have excesses e -  2 and 

e + 2, contradicting the maximality of e). 

We finally remark that if the maximum excess of  a diameter of /3  is e, then the 

polytope P is ½(d - e)-neighbourly, for at least ½(d - e) + 1 points o f / 3  lie on 

each side of every diameter of S. 

The proof  of  the theorem will depend upon the following operation on the 

distended Gale diagram/3. Let L and M be adjacent diameters of/3, whose associa- 

ted points ~ and )3, respectively, are at opposite ends. The d + 1 remaining points 

of /3  fall into two subsets, say r points ~1, "",~, such that 

o ¢ conv {~,)3, ei) (i = 1,. . . ,  r), 

and s points r?l, ..- ~ such that 

o e cony {:~, )3, r~i} (j  = 1, ..., s) 

(see Fig. 1 below). Thus r + s = d + 1. Note that the conditions on 15 imply that 

r >_ 1 and s >- 2. Now suppose r => 2 also. I f  we transpose the diameters Land  M 

(as in Fig. 2), then we reverse the relations above, and therefore, in general, 

change the combinatorial type of  the corresponding polytope P. 

The corresponding change in the numbers of  faces of  P is easily calculated. 

For, a j-face of  P corresponds to a subset of  d - j + 2 points of/3, with o in their 
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convex hull. Such subsets which contain at most one of ~ or 33 are not affected 

in this respect by the transposition, and so the changes arise from those containing 

both ~ and 33. Before the transposition, we obtain such a subset by choosing, 

apart from ~ and 33, t > 0 points from 81, ...,2r and u > 1 points from r~t,-", r~s, 

with t + u = d - j .  Thus, the number is 

After the transposition, we must choose t > 1 from 81, ".. 8,, and u > 0 from 

~1, "", ~s, again with t + u = d - j .  So, the number is 

and the resulting increase Afi in the number of  j-faces is 

It follows at once that the corresponding increase Agj in gj is 

d - i  r 

Agj = ,=-i~ ( - 1 ) J - ' ( d - J ) { ( d -  i)-(dS---i)} 

= 3j  a - r - -  6j  a - s ,  

when ,5 denotes the Kronecker delta function. 

Now let e be the maximal excess of  the diameters of  P. We have already observed 

that the polytope P is then ½ ( d -  e)-neighbourly, so that 

f j  = + ( j =  - 1,...,½(d - e) - 1), 

or  
gj = j + 2  ( j = - l , . . . , ½ ( d - e ) - l ) .  

I f  e = 0 or 1, there is nothing more to prove, so suppose that e >  2. As we 

have remarked, the Pe diameters o f /~  of  excess e can be grouped in adjacent 

pairs with their associated points at opposite ends. We may thus transpose these 

½Pe pairs, in the manner just described. It is easy to verify that the values of  r 

and s are given by 
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so that 

Ix y 

r + s = d +  l, r - s = e - 1 ,  

r = ½ ( d + e ) ,  s = ½ ( d - e + 2 ) .  

2; .  Z .  
1 1 

p, 

A ~ 

Fig. 1 Fig. 2 

Upon transposing any pair, the increase Ag x in g1 is thus 

Agj = ( ~ j . ½ ( d - e )  - -  t ~ j . ~ ( d + e - 2 ) .  

In other words, in the range j = 0, . . . ,  n - 1, we see that g~Cd-e) is increased by 1, 

while the other & ' s  are unaltered. Hence if we transpose all the pairs of  diameters 

of  excess e, the total  increase in & is 0, unless j = ½(d - e), when the increase is 

½Pe. But we observe that each transposition decreases the excesses of  the diame- 

ters involved by 2, so that the resulting Gale diagram has diameters of  maxima 

excess e - 2. Thus the new value of  g~(d-e) is 

½(d - e) + 2 = ½(d - e + 4), 

so that, for the original diagram/3,  we had 

g½(d-e) = ½(d - e + 4 ) -  ½Pe" 

I f  e -  2 > 2, we now apply the same argument to the new Gale diagram, 

noting that  the number  of  its diameters of  excess e - 2 is Pe + Pe-2. An easy 

induction argument then leads to the general expressions 

J 

g i = j + 2 - ½  ]~ Pd-2s ( j = 0 , . . . , n - - 1 ) .  
s = l  

But we have already observed that]~j~ ,Ps --< d - e + 4, and so, f o r j  = 1,. . . ,  n -  1, 

gs > J + 2 - ½(d - (d - 2 j )  + 4) 

= 0 .  
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We complete the first half of the proof of the theorem by remarking that if, for 

some k = l , . . . , n - 1 ,  gk-1 < k + l ,  then Pa-2k+Z >0 ,  SO that p d _ z j > 2  for 

each j  = k , . . . , n  - 1. Thus, f o r j  = k , . . . , n  - 1, 

J 

gj = j + 2 - - ½  ~, Pd-2s 
s = l  

j - - 1  

= j + l - ½  ~., pa_2s+ 1 1 -- -~Pa- 2 j 
S = I  

< gj-1. 

It only remains to show that any set of numbers gj which satisfies the conditions 

of the theorem corresponds to some simplicial d-polytope with d + 3 vertices. 

We shall construct a contracted Gale diagram of such a polytope. 

If g j = j + 2  for j = 0 , . . . , k - 1 ,  but 0 < g j < g j _ ~  for j = k , . . - , n - 1 ,  the 

Gale diagram /5 will have 2k + 3 distinct diameters, which we label in cyclic 

order Lo, L1,... ,L2k+2. 
Points of /5  associated with adjacent diameters are at opposite ends. If i is 

odd, then L, has one associated point. If 1 > 1, then we associate with L2z one 

more point than the number of j > k for which gj = l. With Lo are associated 

the remainder of the d + 3 points of/5.  Elementary (but tedious) calculations 

applied to a distended Gale diagram corresponding to i5 show that the numbers 

Pe of diameters of excess e satisfy 

J 
Pd-2s = 2(j + 2 -- g j), 

s = l  

as required. This completes the proof of the theorem. 

6. Final remarks 

In dimensions 4 and 5, the only inequality of the conjecture which is not trivial 

is gl >= O, or, equivalently, 

f l  > d f ° -  ( d + ( d = 4 , 5 ) .  

However, this is just the inequality of the Lower-bound Conjecture, proved by 

Walkup [15] in dimensions 4 and 5 (the proof by Barnette [1] also covers these 

cases). Implicit in the description by Grfinbaum [3, §10.4] of the possible pairs 

(f0,ft) for 4-polytopes is a proof that f l  achieves every value such that 
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o r  

4 f o - 1 0 < f t <  ( f ° ) .  

0 < g l  < ( f ° - 4 ) =  = 2 =g<°211> 

Similar constructions will show that the range 0 < gl < g0 (211) is also achieved 

by simplicial 5-polytopes, and since the cases d < 3 are trivial, this shows that 

the conjecture of the paper holds in dimensions d < 5. 

In fact Walkup [-15] proved that, if d = 4 or 5, the f-vectors of triangulations of 

the ( d -  1)-sphere are precisely those which satisfy 0 < gl < g0 (211>. Further, 

Mani [-8] has shown that every triangulated (d - 1)-sphere with at most d + 3 

vertices is isomorphic to the boundary complex of  some (simplicial) d-polytope. 

Thus, in every case in which the conjecture is known to be true, it also holds for 

the corresponding triangulated spheres. We might therefore be led to suppose 

that the conjecture should properly apply to triangulated spheres, rather than to 

simplicial polytopes. However, there are fundamental differences between 

triangulated ( d -  1)-spheres and boundary complexes of simplicial d-polytopes. 

For example, if d => 4, Mani's result is false for (d - 1)-spheres with d + 4 vertices 

(see GriJnbaum [-3, §11.5]; these differences are also discussed in Griinbaum [-4]). 

We should therefore, perhaps, be wary of extending the conjecture to triangulated 

spheres. 

References 

1. D. W. Bamette, A proof of  the lower-bound conjecture, Israel J. Math. (to appear) (1970). 
2. M. Dehn, Die Eulersche Formel in Zusammenhang mit dem lnhatt in der nicht-Euklidischen 

Geometrie, Math. Ann. 61 (t905), 561-586. 
3. B. Griinbaum, Convex polytopes, John Wiley and Sons, London-New York-Sydney, 

1967. 
4. B. Gr~inbaum, Polytopes, graphs and complexes, Bull. Amer. Math. Soc. 76 (1970), 

1131-1201. 
5. V. L. Kleo, A combinatorial analogue of Poincard's duality theorem, Canad. J. Math. 16 

(1964), 517-531. 
6. V. L. Klee, On the number of  vertices of  a convex polytope, Canad. J. Math. 16 (1964), 

701-720. 
7. J. B. Kruskal, The number o f  simplices in a complex. Symposium on "Mathematical 

Optimization teehniqaes", Berkeley 1960, Berkeley (1963), 251-278. 
8. P. Mani, Spheres with few vertices (to be published). 
9. P. MeMullen, On aproblem of  Klee concerning convex polytopes, Israel J. Math. 8 (1970), 

1-4. 
I0. P. McMullen, The maximum numbers o f  faces of  a convex polytope, Mathematika 

17 (1970), 179-184. 



570 P. McMULLEN Israel J. Math., 

11. P. McMullen and G. C. Shephard, Convex polytopes and the Upper-bound Conjecture, 
London Math. Soc. Lecture Notes Series, Vol. 3 (1971). 

12. P. McMullen and D. W. Walkup, A generalized Lower-bound Conjecture for simplicial 
polytopes (to be published). 

13. T. S. Motzkin, Comonotone curves and polyhedra, Abstract 111, Bull. Amer. Math. 
Soc. 63 (1957), 35. 

14. D. M. Y. Somrnerville, The relations connecting the angle-sums and volume of  a polytope 
in space o fn  dimensions, Proc. Roy. Soc. Ser. A, 115 (1927), 103-119. 

15. D. W. Walkup, The Lower-bound Conjecture for 3- and 4-manifolds, Acta Math. (to 
appear). 

UNIVERSITY COLLEGE, 

LONDON 


